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Figure 1: Most existing unbiased null-scattering methods for heterogeneous participating media require knowledge of a
maximum density (majorant) to perform well. Unfortunately, bounding majorants are difficult to guarantee in production,
and existing methods like ratio tracking and weighted delta tracking (top, left) suffer from extreme variance if the “majorant”
(𝜇𝑡 = 0.01) significantly underestimates the maximum density of the medium (𝜇𝑡 ≈ 3.0). Starting with the same poor estimate for
a majorant (𝜇𝑡 = 0.01), we propose to instead clamp the medium density to the chosen majorant. This allows fast, low-variance
rendering, but of a modified (biased) medium (top, center). We then show how to progressively update the majorant estimates
(bottom row) to rapidly reduce this bias and ensure that the running average (top right) across multiple pixel samples converges
to the correct result in the limit.

ABSTRACT
Null-collision approaches for estimating transmittance and sam-
pling free-flight distances are the current state-of-the-art for un-
biased rendering of general heterogeneous participating media.
However, null-collision approaches have a strict requirement for
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specifying a tightly bounding total extinction in order to remain
both robust and performant; in practice this requirement restricts
the use of null-collision techniques to only participating media
where the density of the medium at every possible point in space
is known a-priori. In production rendering, a common case is a
medium in which density is defined by a black-box procedural
function for which a bounding extinction cannot be determined
beforehand. Typically in this case, a bounding extinction must be
approximated by using an overly loose and therefore computation-
ally inefficient conservative estimate. We present an analysis of
how null-collision techniques degrade when a more aggressive
initial guess for a bounding extinction underestimates the true max-
imum density and turns out to be non-bounding. We then build
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upon this analysis to arrive at two new techniques: first, a prac-
tical, efficient, consistent progressive algorithm that allows us to
robustly adapt null-collision techniques for use with procedural
media with unknown bounding extinctions, and second, a new
importance sampling technique that improves ratio-tracking based
on zero-variance sampling.
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1 INTRODUCTION
Null-scattering based methods for rendering participating media
have become commonplace within the current generation of pro-
duction renderers [Burley et al. 2018; Gamito 2018; Novák et al.
2018]. These methods take a heterogeneous medium—defined via its
spatially varying absorption coefficient 𝜇𝑎 (𝑥) and scattering coeffi-
cient 𝜇𝑠 (𝑥)—and inject additional fictitious, or null, 𝜇𝑛 (𝑥) density
to create a (locally) homogeneous medium. In practice, the amount
of fictitious density at any location 𝑥 is specified implicitly,

𝜇𝑡 = 𝜇𝑛 (𝑥) + 𝜇𝑎 (𝑥) + 𝜇𝑠 (𝑥)
𝜇𝑟 (𝑥 )

(1)

by taking the difference between the user-defined combined extinc-
tion1 𝜇𝑡 and the real density 𝜇𝑟 (𝑥) = 𝜇𝑎 (𝑥) + 𝜇𝑠 (𝑥). By introducing
a constant combined density 𝜇𝑡 , null-scattering allows using the
same analytic sampling methods as in homogeneous media.

One of the main benefits of this approach in production—in
contrast to, say, ray marching [Perlin and Hoffert 1989]—is how
straightforward it is to create unbiased estimators [Georgiev et al.
2019], meaning it generates predictable results that are correct in
expectation. These methods also benefit from a variety of accelera-
tion techniques [Kutz et al. 2017; Novák et al. 2014; Szirmay-Kalos
et al. 2011; Yue et al. 2010] which allow for efficiently traversing or
analytically accounting for portions of a medium.More recently, the
null-scattering path integral [Miller et al. 2019] has enabled combin-
ing null-scattering via multiple importance sampling (MIS) [Veach
and Guibas 1995] with other techniques, such as equi-angular sam-
pling [Kulla and Fajardo 2012], for increased robustness. This com-
bination of factors has made null-scattering techniques well-suited
for the needs of production volume rendering.

However, the need to directly specify the total density 𝜇𝑡 of the
medium becomes a major challenge since, when 𝜇𝑡 is non-bounding
(i.e. there is negative null-density 𝜇𝑛 (𝑥) < 0), most current methods
1Prior work has often referred to 𝜇𝑡 as the majorant since early methods like delta
tracking [Woodcock et al. 1965] required 𝜇𝑡 to bound 𝜇𝑟 (𝑥 ) from above. We will
instead use the terminology of Miller et al. [2019] by referring to 𝜇𝑡 as the combined
or total extinction since it is the sum of the null, absorption, and scattering coefficients.

[Carter et al. 1972; Cramer 1978; Galtier et al. 2013; Georgiev et al.
2019; Jonsson et al. 2020; Novák et al. 2014] can perform exception-
ally poorly (see Fig. 1). This can become prohibitive in production
since volumetric assets are often the result of a series of physical
simulations, procedural manipulations, or other artistic workflows
where the final density becomes a black box that can only be point-
evaluated. Any choice of 𝜇𝑡 based on point evaluations becomes a
guess for a truly bounding combined extinction 𝜇𝑡 .

In production rendering, we have effectively two options to
remain robust and unbiased when using null-scattering: We can
specify a conservative value for 𝜇𝑡 , but this may result in prohibi-
tively expensive renders if the value is excessively loose for some or
all of the volume. Alternatively, we can bake all volumes into voxel
density grids as a pre-process. This is what we do in our current
system, since it allows computing tight values for 𝜇𝑡 , but this has a
startup cost, is memory intensive, and reduces the visual fidelity of
all media. Clearly, neither option is ideal.

With an eye towards our next-generation production volume
renderer, we aim to develop a technique resilient to non-bounding,
otherwise “incorrect”, guesses for 𝜇𝑡 . While some specialized tech-
niques do exist for side-stepping negative null coefficients [Carter
et al. 1972; Cramer 1978; Galtier et al. 2016; Szirmay-Kalos et al.
2017], we aim to create a generalized framework with which we
can easily adapt all existing null-scattering techniques that do not
currently handle negative null coefficients well. To accomplish this,
we first analyze why existing null-scattering methods exhibit such
poor variance behavior in the presence of negative null densities
(Sec. 3). With these insights, we propose (Sec. 4) a simple way to
avoid this increased variance by clamping the real medium density
𝜇𝑟 to never exceed the specified total extinction 𝜇𝑡 . This approach
in essence trades variance for bias, since we reduce variance but
render a modified (“biased”) medium. We then introduce a consis-
tent, progressive formulation (akin to progressive photon mapping
[Hachisuka et al. 2008]) to eliminate this bias across multiple passes
(Sec. 4.1) and a practical, scene-adaptive approach for updating
the clamping parameter to keep render times efficient (Sec. 4.2).
Inspired by our analysis, we additionally introduce (Sec. 5) an ap-
proximate zero-variance sampling scheme to specifically improve
ratio-tracking [Novák et al. 2014]. We provide a longer review of
how our contributions relate to prior work in Sec. 6, and include
comparisons to existing approaches in Sec. 7. We provide our full
implementation online [Misso et al. 2023].

2 BACKGROUND
To render heterogeneous participating media in the null-scattering
framework [Kutz et al. 2017; Miller et al. 2019], the radiance arriving
at a point 𝑥 from direction 𝜔 can be written as

𝐿(𝑥, 𝜔) = Tr(𝑥,𝑦)𝐿𝑠 (𝑦,𝜔) +
∫ 𝑦

𝑥

𝑝 (𝑡)𝐿𝑚 (𝑡, 𝜔) d𝑡 . (2)

This involves the radiance, 𝐿𝑠 (𝑦,𝜔), leaving the nearest surface in-
tersection𝑦 along the ray [Immel et al. 1986; Kajiya 1986], weighted
by the combined transmittance Tr(𝑥,𝑦) = e−∥𝑥−𝑦 ∥𝜇𝑡 which ex-
presses the probability of encountering no real or null collisions
when traveling from 𝑥 to 𝑦. We additionally need to integrate the
medium radiance 𝐿𝑚 from all points between 𝑥 and 𝑦 along the ray,
weighted by the combined free-flight distribution 𝑝 (𝑡) = 𝜇𝑡 e−𝑡𝜇𝑡 ,
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which expresses the probability density of a collision occurring with
a real or null particle at distance 𝑡 . In a slight abuse of notation, we
allow 𝑡 to refer to both a distance, and a position at that distance
when it is clear from context.

The medium radiance,

𝐿𝑚 (𝑥, 𝜔) = 𝜇𝑎 (𝑥)
𝜇𝑡

𝐿𝑚𝑒 (𝑥,𝜔) +
𝜇𝑛 (𝑥)
𝜇𝑡

𝐿(𝑥,𝜔)

+ 𝜇𝑠 (𝑥)
𝜇𝑡

∫
𝑆2

𝜌𝑚 (𝜔, 𝑥,−𝜔 ′)𝐿(𝑥,𝜔 ′) d𝜔 ′,
(3)

sums the contributions from emission 𝐿𝑚𝑒 (𝑥, 𝜔), null-scattering in
the forward direction, and integrated in-scattered radiance. We
refer to the quantities 𝛼∗ (𝑥) = 𝜇∗ (𝑥 )/𝜇𝑡 as the absorption, null, and
scattering albedos for 𝜇∗ = 𝜇𝑎 , 𝜇∗ = 𝜇𝑛 , and 𝜇∗ = 𝜇𝑠 , respectively.
The phase function 𝜌𝑚 is the medium’s directional distribution dic-
tating how rays can scatter given a location and incoming direction.

Monte Carlo rendering estimates the above integral equations
using Monte Carlo sampling. In practice, we often have a choice of
different sampling PDFs that excel at sampling certain types of light
paths or at sampling certain parts of the integrand. For instance, we
can dramatically reduce variance compared to naive unidirectional
path tracing by tracing shadow rays towards light sources [Shirley
et al. 1996], and combine different strategies using MIS [Veach and
Guibas 1995]. The formulation above readily supports directional
MIS [Kutz et al. 2017] by considering different directional PDFs
for estimating the in-scattered radiance integral in Eq. (3). Also, by
inserting Eq. (3) into Eq. (2) and recursively considering all forward
null events, we can obtain the Volterra integral formulation for the
real transmittance [Georgiev et al. 2019],

Tr(𝑥,𝑦) = Tr(𝑥,𝑦) +
∫ 𝑦

𝑥

𝛼𝑛 (𝑡)𝑝 (𝑡) Tr(𝑡, 𝑦) d𝑡, (4)

which is necessary to compute when tracing shadow rays. The null-
scattering path integral [Miller et al. 2019] then allows us to perform
MIS between different strategies for evaluating transmittance.

For a more thorough overview of null scattering theory for vol-
umetric rendering, we refer the reader to Novák et al. [2018]’s
excellent state-of-the-art report.

3 ROOT CAUSE OF DEGENERATE
BEHAVIOUR

To improve the robustness of null-scattering techniques, we must
first analyze how existing techniques degrade when used with non-
bounding estimates of 𝜇𝑡 . We analyze the root cause of increased
variance when estimating transmittance using Eq. (4), and then
similarly discuss the free-flight sampling case.

3.1 Transmittance estimation
Most tracking-based transmittance estimators [Georgiev et al. 2019;
Novák et al. 2014; Woodcock et al. 1965] can be derived by applying
Monte Carlo estimation directly to Eq. (4), giving

⟨Tr(𝑥,𝑦)⟩ = Tr(𝑥,𝑦)
𝑃Tr

+ 𝛼𝑛 (𝑡)𝑝 (𝑡) ⟨Tr(𝑡, 𝑦)⟩
𝑝MC (𝑡)𝑃rec

, (5)

where 𝑃Tr is the probability that the first term is evaluated, 𝑃rec is
the probability that the recursive second term is evaluated, ⟨Tr(𝑥,𝑦)⟩
denotes an estimate of the quantity Tr(𝑥,𝑦), and we use 𝑝MC (𝑡) to
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Figure 2: A comparison of the behaviour of ratio tracking
with bounding (top) and non-bounding (bottom) total extinc-
tions. On the right we plot the ground truth transmittance
(red), the average of 100 invocations of ratio tracking (black),
and also plot the individual instances (thin blue).

denote the conditional probability density used to sample a distance
𝑡 for the recursive integral. We include the subscript to be explicit
that this is a distribution used for Monte Carlo and is generally dis-
tinct from the combined free-flight distribution 𝑝 (𝑡) in the integral
equation itself.

3.1.1 Ratio tracking. As a specific example for how negative null-
density can impact estimators for Eq. (5), let us consider the ratio-
tracking family of techniques [Novák et al. 2014]. In its most ba-
sic form, ratio tracking works by sampling a tentative distance
proportional to the medium’s combined free-flight distribution
𝑝 (𝑡). It chooses to only evaluate the first term of Eq. (5) if a dis-
tance 𝑡 > 𝑦 is sampled, and only evaluates the second term when
𝑡 ≤ 𝑦 is sampled. This is equivalent to setting 𝑃Tr = Tr(𝑥,𝑦) and
𝑃rec = 1− Tr(𝑥,𝑦). The conditional probability density of sampling
a distance is 𝑝MC (𝑡) = 𝑝 (𝑡)/𝑃rec, where 𝑃rec ensures that the PDF
is properly normalized within the integration interval from 𝑥 to 𝑦.

Inserting these values into Eq. (5), ratio tracking can thus be
written succinctly as,

⟨Tr(𝑥,𝑦)⟩ =
𝑚−1∏
𝑗=1

𝛼𝑛 (𝑥 𝑗 ) =
𝑚−1∏
𝑗=1

𝜇𝑛 (𝑥 𝑗 )
𝜇𝑡

=

𝑚−1∏
𝑗=1

𝜇𝑡 − 𝜇𝑟 (𝑥 𝑗 )
𝜇𝑡

, (6)

where𝑚 is the total number of recursions in Eq. (5) or steps taken,
and 𝑥 𝑗 is the 𝑗 th ordered location along the ray [Novák et al. 2014].
The resulting running product is a nice monotonically decreasing,
positive function when 𝜇𝑡 is bounding, i.e. 𝜇𝑟 (𝑥) < 𝜇𝑡 , however
when 𝜇𝑡 becomes non-bounding this behaviour deteriorates (Fig. 2).

When 𝜇𝑡 < 𝜇𝑟 (𝑥) < 2𝜇𝑡 , the sign of the transmittance estimates
(6) will begin to flip, but their absolute values will remain a mono-
tonically decreasing function bounded within [−1, 1] since each
term in the product is between [−1, 1]. We refer to this case as
slightly non-bounding since variance will increase, but may still
be manageable. On the other hand, once 𝜇𝑡 is significantly non-
bounding, 𝜇𝑟 (𝑥) > 2𝜇𝑡 , the absolute magnitude of each term in
Eq. (6) will become greater than one, causing the running prod-
uct, and hence the variance, to become unbounded as𝑚 increases
(Fig. 3).
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Figure 3: A comparison of the different behaviours exhibited
by ratio trackingwhen 𝜇𝑡 is bounding, slightly non-bounding,
and significantly non-bounding for a constant density absorb-
ing medium (top row). We visualize the returned transmit-
tance as a function of the number of exponential distances
sampled (middle row) and visualize the difference in render
quality for approximately equal spp renders (bottom row).

Variance analysis. Georgiev et al. [2019] previously derived an
analytic expression for the variance of ratio tracking in the special
case of a homogeneous medium where 𝜇𝑟 (𝑡) = 𝜇𝑟 :

V[⟨Tr(𝑥,𝑦)⟩] = e−2𝜇𝑟𝑑
(
e
(𝜇𝑟 𝑑 )2
𝜇𝑡𝑑 − 1

)
, (7)

where 𝑑 = 𝑦 − 𝑥 is the distance between 𝑥 and 𝑦. Georgiev et al.
focused specifically on the behaviour of ratio tracking when the
combined extinction 𝜇𝑡 is tightly versus loosely bounding, however,
they did not analyze the non-bounding case. By rewriting Eq. (7) as

V[⟨Tr(𝑥,𝑦)⟩] = e
(
𝜇𝑟 −2𝜇𝑡

𝜇𝑡

)
𝜇𝑟𝑑 − e−2𝜇𝑟𝑑 , (8)

we can analytically explain the different behaviours of ratio tracking
under varying degrees of bounding extinctions (see Fig. 3).

The crucial part of Eq. (8) is the first exponential, since the
choice of 𝜇𝑡 can influence the sign of the exponent and whether
variance remains bounded. When the extinction is slightly non-
bounding (𝜇𝑡 < 𝜇𝑟 < 2𝜇𝑡 ) the exponent remains negative, so
variance is bounded and decreases as a function of distance. Once
𝜇𝑡 is significantly non-bounding (𝜇𝑟 > 2𝜇𝑡 ) the exponent becomes
positive and the variance unbounded. Even worse, the variance
increases exponentially as a function of distance.

𝜇𝑡 = 2𝜇𝑟 𝜇𝑡 = 0.7𝜇𝑟 𝜇𝑡 = 0.2𝜇𝑟
Figure 4:We visualize the degradation ofweighted delta track-
ing [Cramer 1978; Galtier et al. 2013] for free-flight distance
sampling in the presence of non-bounding extinctions for
a scene containing a homogeneous medium while only ren-
dering direct illumination. All renders are roughly equal
extinction calls, and transmittance is evaluated analytically.

3.2 Free-flight sampling
Evaluating transmittance to the next surface scattering event only
accounts for the first term in Eq. (2). Estimating the remaining inte-
gral typically requires free-flight distance sampling routines, such
as delta tracking [Woodcock et al. 1965], weighted delta-tracking
[Cramer 1978; Galtier et al. 2013], or decomposition tracking [Kutz
et al. 2017]. These techniques estimate Eq. (3) by assigning probabili-
ties 𝑃𝑎 , 𝑃𝑛 , 𝑃𝑠 to evaluate emission, null-scattering, and in-scattered
radiance, respectively:〈

𝐿𝑚 (𝑥,𝜔)
〉
=

𝜇𝑎 (𝑥)
𝜇𝑡

𝐿𝑚𝑒 (𝑥, 𝜔)
𝑃𝑎

+ 𝜇𝑛 (𝑥)
𝜇𝑡

𝐿(𝑥, 𝜔)
𝑃𝑛

+ 𝜇𝑠 (𝑥)
𝜇𝑡

𝜌𝑚 (𝜔, 𝑥,−𝜔 ′)𝐿(𝑥,𝜔 ′)
𝑝MC (𝜔 ′)𝑃𝑠

.

(9)

Unfortunately, when negative null-densities occur, free-flight
sampling of this form suffers from a similar explosion in variance
as we previously saw for transmittance estimation.

For instance, weighted delta tracking [Cramer 1978; Galtier et al.
2013] sets 𝑃𝑎 , 𝑃𝑛 , and 𝑃𝑠 to

𝑃∗ (𝑥) =
𝜇∗ (𝑥)

𝜇𝑟 (𝑥) + |𝜇𝑛 (𝑥) |
. (10)

Inserting these probabilities leads to a shared factor of 𝜇𝑟 (𝑥 )+|𝜇𝑛 (𝑥 ) |
𝜇𝑡

multiplying each of the three branches in Eq. (9). When 𝜇𝑡 is non-
bounding, this factor is greater than 1 and the weight (and variance)
of the estimator grows exponentially with distance (see Fig. 4) in a
similar manner to ratio tracking.

4 OUR METHOD
While slightly non-bounding extinctions might be usable in a pro-
duction setting they result in increased variance, and the potential
for unbounded variance due to significantly non-bounding extinc-
tions is prohibitive. Instead of modifying individual estimators to
be more resilient to non-bounding extinctions, the core idea behind
our method is to first bias the medium itself to avoid non-bounding
extinctions and then use a progressive technique to remove the bias
over time.

For a chosen extinction 𝜇𝑡 , we simply do not allow negative
null densities. Given the relationship in Eq. (1), we accomplish this
by defining our modified medium with a clamped real extinction
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Figure 5: We visualize the idea of biasing a medium through
clamping its real density to avoid 𝜇𝑛 < 0. Note that clamping
𝜇𝑟 (𝑥) to 𝜇𝑛 allows for the use of null-tracking but results in
lost detail.

Reference n=1 n=2 n=4 n=100

Figure 6: We visually illustrate an example of how taking
the average of 𝑛 renders while linearly increasing the total
extinction can result in converging images. For visualization
purposes, each iteration is rendered to near convergence
instead of just one pixel sample.

coefficient 𝜇+𝑟 (𝑥) = min(𝜇𝑟 (𝑥), 𝜇𝑡 ). The corresponding clamped
null density 𝜇+𝑛 (𝑥) = 𝜇𝑡 − 𝜇+𝑟 (𝑥), is then always non-negative.

We can now apply any unbiased tracking-based estimator on
this modified medium while avoiding the degenerate behavior we
discussed in Sec. 3. However, since we’ve modified the medium, we
will get an unbiased estimate, but of the wrong answer (see Fig. 5).
In essence, this trades variance for bias.

4.1 Progressive Extinctions
We then formulate a progressive and consistent estimator (akin to
progressive photonmapping [Hachisuka and Jensen 2009; Hachisuka
et al. 2008; Knaus and Zwicker 2011]), that ensures the bias will
go to zero. Let us denote with 𝐼 (𝜇𝑡 ) the expected value of ren-
dering a medium clamped to a particular choice of 𝜇𝑡 . We form
our progressive estimator by averaging 𝑛 images, where the im-
ages are rendered using a sequence {𝜇 (𝑘 )𝑡 } B {𝜇

(1)
𝑡 , 𝜇

(2)
𝑡 , . . . 𝜇

(𝑛)
𝑡 }

of non-decreasing total extinctions:

⟨𝐼 ⟩ = 1
𝑛

𝑛∑︁
𝑘=1

〈
𝐼 (𝜇 (𝑘 )𝑡 )

〉
, (11)

where 𝜇 (𝑘 )𝑡 is the total extinction used to render image 𝑘 .

As long as 𝜇 (𝑘 )𝑡 bounds 𝜇𝑟 (𝑥) after some finite iteration 𝑗 , the
bias will disappear in the limit of 𝑛 since an infinite number of
unbiased iterations will overpower any bias accumulated from the
first 𝑗 iterations. While we provide a more rigorous proof in the
supplemental, this means Eq. (11) is consistent, eliminating bias in
the limit,

𝐼 = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑘=1

〈
𝐼 (𝜇 (𝑘 )𝑡 )

〉
. (12)

A naive choice that satisfies these conditions could be to linearly
increase the total extinction in each iteration:

𝜇
(𝑘+1)
𝑡 = 𝑐𝜇

(𝑘 )
𝑡 , (13)

for any constant 𝑐 > 1 which we visualize in Fig. 6. Unfortunately,
this is impractical since the cost of rendering the image increases
as 𝜇 (𝑘 )𝑡 increases.

4.2 Adaptive Approach
For practical applications we would like a progressive sequence
{𝜇 (𝑘 )𝑡 } which reaches a bounding 𝜇𝑡 and then stops increasing 𝜇𝑡
to maintain low render times. Luckily, the individual images we
average in our progressive formulation (11) become unbiased once
we reach 𝜇

(𝑘 )
𝑡 ≥ 𝜇𝑟 , which affords us considerable flexibility to

adaptively update 𝜇 (𝑘 )𝑡 from one iteration to the next.
We choose to update 𝜇𝑡 only when encountering non-bounded

real densities in the previous rendering pass:

𝜇
(𝑘+1)
𝑡 = max

∀𝑥 (𝑘 )
(𝜇 (𝑘 )𝑡 , 𝜇𝑟 (𝑥 (𝑘 ) ) + 𝜖), (14)

where 𝑥 (𝑘 ) is any medium lookup performed in pass 𝑘 , and 𝜖 is a
small user-defined constant. As long as there is a non-zero measure
of points within an 𝜖 of the function’s maximum, Eq. (14) guarantees
that a bounding extinction is expected to be found in finite time.
In other words, all density functions where we have a non-zero
chance of randomly sampling a position whose density is close
to (but not necessarily equal to) the peak density are supported.
This accounts for all densities typically used in production, like
tri-linearly or tri-cubically interpolated and layered grids, and most
procedural manipulations.

Our entire clamping and progressive approach can be practically
described as replacing all density evaluations in a renderer with
Algorithm 1 which returns a potentially clamped density, and an
updated total extinction for use in the next render pass.

Algorithm 1: EvaluateDensity(𝜇 (𝑘 )𝑡 , 𝑜 , 𝜔 , 𝑡 )

Input : 𝜇 (𝑘 )𝑡 , ray origin 𝑜 , ray direction 𝜔 , distance 𝑡
Output : 𝜇+𝑟 , 𝜇

(𝑘+1)
𝑡

1 𝜇+𝑟 ← min(𝜇𝑟 (𝑜 + 𝑡𝜔), 𝜇 (𝑘 )𝑡 )
2 𝜇
(𝑘+1)
𝑡 ← max(𝜇 (𝑘 )𝑡 , 𝜇𝑟 (𝑜 + 𝑡𝜔) + 𝜖)

3 return 𝜇+𝑟 , 𝜇
(𝑘+1)
𝑡
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Figure 7: An illustration of the difference between our adap-
tive importance sampling and ratio-tracking’s traditional
importance sampling. The black vertical line represents the
location of the current tracking in the medium (left graph).
The right graph shows that our technique will sample the
next exponential distance proportional to 𝜇𝑛 (𝑡) (blue) instead
of 𝜇𝑡 (𝑡) (red).

5 IMPORTANCE SAMPLING EXTINCTIONS
Most notable null-tracking techniques sample distances from a
distribution 𝑝MC (𝑡) which is directly proportional to the combined
free-flight distribution of the underlying medium. However, this is
not the most optimal choice. In a similar vein to d’Eon and Novák
[2021]; Křivánek and d’Eon [2014], we formulate a theoretically
zero-variance estimator for evaluating transmittance with ratio
tracking. While the zero-variance estimator is not achievable, we
use it to derive an approximate but practical importance sampling
strategy to directly improve ratio tracking.

Zero variance analysis. Assuming we have a bounding extinction
𝜇𝑡 ≥ 𝜇𝑟 , and the real density is homogeneous, we can formulate a
zero variance estimator for ratio tracking by sampling distances
proportional to,

𝑝MC (𝑡) = 𝜇𝑛T̂r(𝑥, 𝑡), where T̂r(𝑥, 𝑡) = e−𝜇𝑛𝑡 = Tr(𝑥, 𝑡)
Tr(𝑥, 𝑡) . (15)

To confirm this, we can plug Eq. (15) into Eq. (4),

⟨Tr(𝑥,𝑦)⟩ = Tr(𝑥,𝑦)
𝑃Tr

+ 𝛼𝑛 (𝑡)𝑝 (𝑡) ⟨Tr(𝑡, 𝑦)⟩
𝜇𝑛T̂r(𝑥, 𝑡)𝑃rec

. (16)

By noting that ratio tracking obtains 𝑃rec and 𝑃Tr by integrating
and renormalizing 𝑝MC (𝑡), this equation simplifies to

⟨Tr(𝑥,𝑦)⟩ = Tr(𝑥,𝑦) + Tr(𝑥, 𝑡) ⟨Tr(𝑡, 𝑦)⟩ , (17)
which always returns the exact transmittance (note that ratio track-
ing evaluates only the first or second term on the right-hand side).

This result says that instead of sampling distances 𝑡 propor-
tional to the total free-flight distribution (as ratio tracking normally
does), we would get zero variance if we sampled according to the
“null-free-flight distribution” in Eq. (15). Unfortunately, this is not
possible in practice since 𝜇𝑛 = 𝜇𝑛 (𝑥) is an unknown, spatially
varying function.

However, this exercise reveals an important insight. Ratio track-
ing can be improved by decoupling the medium’s combined free-
flight distribution from the distribution used for sampling. While
this may seem obvious, to our knowledge, this is the first time this
idea has been proposed for any tracking based technique.

An importance sampled approach. Motivated by our zero variance
analysis of ratio tracking and progressive technique for adapting 𝜇𝑡
during renders (Sec. 4.2), we propose an importance-sampled form
of ratio tracking Algorithm 2 which chooses 𝑝MC (𝑡) for the next

Algorithm 2: AdaptiveRatioTracking(𝜇 (𝑘 )𝑡 , 𝑜 , 𝜔 , 𝑑)

Input : 𝜇 (𝑘 )𝑡 , 𝑜 , 𝜔 , medium length 𝑑
Output :𝑇 : transmittance, 𝜇 (𝑘+1)𝑡 : next iteration majorant

1 𝑇 ← 1
2 𝑡 ← 0
3 𝜇MC ← 𝜇

(𝑘 )
𝑡

4 while 𝑡 < 𝑑 and 𝜇MC > 0 do
5 𝑥 ← min(− ln(1 − 𝑢)/𝜇MC, 𝑑 − 𝑡)
6 𝑇 ← 𝑇 ∗ exp((𝜇MC − 𝜇 (𝑘 )𝑡 ) ∗ 𝑥)
7 if 𝑥 ≠ 𝑑 − 𝑡 then
8 𝑡 ← 𝑡 + 𝑥
9 𝜇+𝑟 , 𝜇

(𝑘+1)
𝑡 = EvaluateDensity(𝜇 (𝑘 )𝑡 , 𝑜, 𝜔, 𝑡)

10 𝑇 ← 𝑇 ∗ (𝜇 (𝑘 )𝑡 − 𝜇+𝑟 ) / 𝜇MC
11 𝜇MC ← 𝜇

(𝑘 )
𝑡 − 𝜇+𝑟

12 return 𝑇 , 𝜇 (𝑘+1)𝑡

recursion of Eq. (4) by setting it proportional to Eq. (15) where we
use 𝜇MC = 𝜇+𝑛 (𝑥) from the current recursion as a proxy for the true
𝜇𝑛 . Compared to traditional ratio tracking, our approach favors
taking larger free-flight distances which we illustrate in Fig. 7.

6 RELATION TO PRIORWORK
In this section, we review how prior work has gone about tackling
the problem of unknown total extinctions and progressive estima-
tion as well as how they differ from the contributions we have
introduced in this paper.

Handling unknown total extinctions. Previous efforts at handling
heterogeneous media with unknown total extinction values focused
on side-stepping the problem of potential negative null coefficients
entirely. Szirmay-Kalos et al. [2017] and Szirmay-Kalos et al. [2018]
demonstrate methods to bypass negative null coefficients by ma-
nipulating the medium itself to be analytically sampleable while
maintaining the same expected radiance as the original medium.
Weighted tracking [Carter et al. 1972; Cramer 1978] allows the total
extinction estimate to occasionally underestimate the true extinc-
tion, but as we saw in Sec. 3, reweighting the samples to remain
unbiased leads to severe variance for significantly non-bounding
extinctions. Galtier et al. [2013, 2016] allow for non-bounding ex-
tinctions by allowing negative Monte Carlo weights, though at
the cost of lowering the convergence rate. More recent estima-
tors, such as Taylor series-based unbiased ray marching [Kettunen
et al. 2021], debiased raymarching using an unbiased telescoping
series formulation [Misso et al. 2022], and the Taylor series based
pseries-cumulative and pseries-cdf estimators [Georgiev et al. 2019],
trade off variance for computation time. Of these methods, debi-
ased raymarching does not depend on null collision theory and
both pseries-cumulative and unbiased raymarching can effectively
bypass the need for directly specifying a total extinction. These esti-
mators work well for low-albedo media where transmittance is the
dominant source of image variance. However, for high-albedo me-
dia with multiple scattering, this tradeoff is often less worthwhile
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since overall image variance tends to be dominated by other fac-
tors; here inexpensive estimators with manageable variance tend to
considerably outperform expensive, but lower variance, estimators
since affording more samples per pixel helps reduce other variance
sources; our work focuses on these inexpensive estimators.

Progressive estimation. Our progressive medium clamping is con-
ceptually similar to both progressive photon mapping [Hachisuka
et al. 2010; Hachisuka and Jensen 2009; Hachisuka et al. 2008; Jarosz
et al. 2011; Knaus and Zwicker 2011; Novák et al. 2012] and pro-
gressive many-light methods [Dachsbacher et al. 2014; Davidovič
et al. 2012; Keller 1997; Walter et al. 2005]. A key difference is that
bias exists in every iteration of these methods—as blurring (photon
mapping) or loss of short-range and glossy transport (many-lights)—
which necessitates careful error analysis to ensure a converging
radius or clamping reduction formula. In contrast, our approach’s
individual passes become unbiased once we reach a bounding ex-
tinction, which significantly simplifies our needed analysis and
readily supports the scene-adaptive and spatially-adaptive update
formulas proposed in Sec. 4.2. Misso et al. [2022] introduced a
debiasing framework and showed how generalized progressive for-
mulations can be derived directly from it. They also introduced
progressive finite differences for evaluating derivatives as well as
unbiased progressive photon mapping. Since individual iterations
become unbiased after a finite number of steps, further debiasing
is not needed.

7 RESULTS AND IMPLEMENTATION
While our goal is to eventually incorporate our adaptive techniques
into our production renderer, we implemented our current proto-
type within PBRT [Pharr et al. 2016] for easier testing and com-
parison. Though we previously denoted 𝜇𝑡 as a scene-wide homo-
geneous constant for notational simplicity, in practice we store
and update spatially varying bounding extinctions 𝜇𝑡 on a coarse-
resolution grid as in prior work [Novák et al. 2014; Szirmay-Kalos
et al. 2011]. We use an 803 grid fit to the medium extents where each
grid cell, or super-voxel, stores its own estimate of 𝜇𝑡 for the portion
of the medium it spans. In essence, 𝜇𝑡 becomes a piecewise func-
tion for any path through the medium. When rendering pass 𝑘 we
update the total extinction 𝜇

(𝑘+1)
𝑡 for the next pass independently

for each super-voxel.
For all of our comparisons we choose to initialize the extinctions

for all super-voxels to be near zero (𝜇 (1)𝑡 = .01) when employing
our progressive approach. This corresponds to the near-worst case
scenario for prior methods and we choose to do so for the pur-
pose of conveying the robustness of our technique. In Fig. 1 we
visualize just how poorly prior work performs for the same worst-
case scenario by comparing our progressive technique against ratio
tracking + weighted delta tracking in a scene containing a fully
procedural medium. While prior methods exhibit variance which
can never converge in any practical amount of time, our technique
effectively removes this variance through biasing the medium, and
then discovers bounding 𝜇𝑡 , eventually removing the bias.

In Fig. 10 we instead give ratio tracking the benefit of knowing
the true bounds a-priori, and despite using a near-worst case initial-
ization, our technique very quickly discovers bounding values for
𝜇𝑡 (top graph), and reports a nearly equivalent mean squared error
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Figure 8: We compare the work-normalized variance (cost
× variance) of traditional ratio-tracking [Novák et al. 2014]
against our importance sampling strategy (right) across a
variety of canonical extinction functions (left).

to ratio tracking (bottom graph). The convergence of our technique
greatly benefits from the fact that every path generated during
a render can contribute to discovering bounding 𝜇𝑡 for all super-
voxels. By the time the first few pixel samples have been evaluated,
enough bounding extinctions have populated grid that any bias is
both visually and numerically negligible. Our progressive approach
maintains the same good performance of prior techniques while
successfully making them resilient to non-bounding extinctions.

In Fig. 8 we compare classical ratio tracking with and without
our importance sampling strategy (Sec. 5) for a variety of canonical
extinction functions. For each one, ratio tracking with our adaptive
sampling strategy results in a more efficient estimation technique
in terms of work-normalized variance.

In Fig. 9 we compare our technique to the state of the art in
transmittance estimation in a scene containing highly scattering
media. Most of the more recent transmittance estimators such as
unbiased raymarching [Kettunen et al. 2021], debiased raymarching
[Misso et al. 2022], and pseries-cdf [Georgiev et al. 2019] trade lower
variance transmittance estimates for higher costs and are also at
least partially resilient to non-bounding extinctions. However, in
highly scattering scenes such as this one which are very common
in production, the majority of the noise is due to other sources
than transmittance estimation so utilizing a cheaper technique like
ratio tracking is currently more viable in production rendering. Our
progressive approach with near-worst case initializations for 𝜇𝑡
still maintains similar performance to ratio tracking with perfect
knowledge of bounding 𝜇𝑡 .



SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Zackary Misso, Yining Karl Li, Brent Burley, Daniel Teece, and Wojciech Jarosz

8 CONCLUSION
Our ultimate goal in this work was to alleviate one of the most glar-
ing drawbacks of using null-scattering based techniques in produc-
tion: the need to directly specify bounding extinctions 𝜇𝑡 . Existing
methods suffer from high variance in the presence of non-bounding
extinctions and high-albedo media, both of which are occurring
with increasingly frequency in our productions. We introduced a
novel progressive technique that makes existing null-tracking based
methods resilient to non-bounding extinctions, while maintaining
their computational efficiency. While our approach introduces bias,
it is consistent, converging to the correct result in the limit. In doing
so, we have alleviated the most notable caveat of using null-tracking
in production.

We have also introduced a novel adaptive sampling routine for
ratio tracking based on zero-variance estimation which we hope can
motivate future improvements to other null-tracking techniques.

8.1 Future work
For future work, we plan on exploring different strategies for initial-
izing, clamping, and updating bounding extinctions 𝜇𝑡 . Currently,
we conservatively clamp densities to ensure the total extinction is
bounding, but our analysis in Sec. 3 implies that allowing some neg-
ative null-density (as long as the medium remains only slightly non-
bounding) may further reduce bias while still ensuring bounded
variance.

Additionally, we plan on expanding our method to support resid-
ual trackers, which would simply involve storing additional local
information other than 𝜇𝑡 . We also hope to apply our importance
sampling idea to other null-tracking techniques.

Finally, while our current prototype is implemented in PBRT, we
intend on incorporating this technique into our production renderer.
Our current implementation utilizes a naive multithreading scheme
for updating the bounding extinctions: separate threads write up-
dated bounding extinctions into the super-voxel grid independently
with no synchronization. The nature of our method happens to be
resilient to the kind of race conditions that can result, and our im-
plementation eventually produces bounding extinctions once con-
sistency has been reached. At intermediate sample counts, however,
the state of the super-voxel grid will be non-deterministic. A more
sophisticated multithreading scheme is needed if fully deterministic
intermediate behavior is desired in a production environment.
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Figure 9: An equal extinction lookups comparison of our progressive method initialized with near-zero total extinction versus
many of the state-of-the-art transmittance estimators given bounding extinctions for a highly scattering medium. All methods
employ weighted-delta tracking for free-flight sampling. MSE values are computed as the average MSE across the entire image.
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Figure 10: We compare the performance of our progressive estimator to ratio-tracking while also showing the convergence
of our super-voxel grid. We visualize a slice of the super-voxel grid (bottom row) throughout a render. We also compare the
convergence of the MSE of our method to ratio tracking (bottom graph) and convey the convergence of our super-voxel grid by
plotting the percentage of voxels with bounding 𝜇𝑡 ’s (top graph).
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